The variable expressivity and incomplete penetrance of the twist-null heterozygous mouse phenotype resemble those of human Saethre-Chotzen syndrome.

نویسندگان

  • P Bourgeois
  • A L Bolcato-Bellemin
  • J M Danse
  • A Bloch-Zupan
  • K Yoshiba
  • C Stoetzel
  • F Perrin-Schmitt
چکیده

Most targeted gene mutations are recessive and analyses of gene function often focus on homozygous mutant phenotypes. Here we describe parts of the expression pattern of M-twist in the head of developing wild-type mice and present our analysis of the phenotype of heterozygous twist- null animals at around birth and in adults. A number of twist -null heterozygous mice present skull and limb defects and, in addition, we observed other malformations, such as defects in middle ear formation and the xyphoïd process. Our study is of interest to understand bone formation and the role of M-twist during this process, as within the same animal growth of some bones can be accelerated while for others it can be delayed. Moreover, we show here that expressivity of the mouse mutant heterozygous phenotype is dependent on the genetic background. This information might also be helpful for clinicians, since molecular defects affecting one allele of the human H-twist ( TWIST ) gene were identified in patients affected with Saethre-Chotzen syndrome (SCS). Expressivity of this syndrome is variable, although most patients present craniofacial and limb malformations resembling those seen in mutant mice. Thus the mutant mouse twist -null strain might be a useful animal model for SCS. The twist -null mutant mouse model, combined with other mutant mouse strains, might also help in an understanding of the etiology of morphological abnormalities that appear in human patients affected by other syndromes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of a dominant negative C. elegans Twist mutant protein with implications for human Saethre-Chotzen syndrome.

Twist is a transcription factor that is required for mesodermal cell fates in all animals studied to date. Mutations of this locus in humans have been identified as the cause of the craniofacial disorder Saethre-Chotzen syndrome. The Caenorhabditis elegans Twist homolog is required for the development of a subset of the mesoderm. A semidominant allele of the gene that codes for CeTwist, hlh-8, ...

متن کامل

Parietal foramina in Saethre-Chotzen syndrome.

Saethre-Chotzen syndrome is characterised by craniosynostosis, facial asymmetry, low set frontal hairline, ptosis of the eyelids, deviated nasal septum, prominent crus of the ears, and a variable degree of brachydactyly and partial cutaneous syndactyly of the second and third fingers.12 Inheritance is autosomal dominant, mostly reported with a high degree of penetrance, although in a series rep...

متن کامل

The TWIST gene, although not disrupted in Saethre-Chotzen patients with apparently balanced translocations of 7p21, is mutated in familial and sporadic cases.

The TWIST gene maps to 7p21 and mutations in the gene have been reported in the Saethre-Chotzen form of craniosynostosis. The position of the Saethre-Chotzen gene has previously been refined by FISH analysis of four patients carrying balanced translocations involving 7p21 which suggested that it was located between D7S488 and D7S503. We report here that the breakpoints in four translocation pat...

متن کامل

Increased bone formation and decreased osteocalcin expression induced by reduced Twist dosage in Saethre-Chotzen syndrome.

The Saethre-Chotzen syndrome is characterized by premature fusion of cranial sutures resulting from mutations in Twist, a basic helix-loop-helix (bHLH) transcription factor. We have identified Twist target genes using human mutant calvaria osteoblastic cells from a child with Saethre-Chotzen syndrome with a Twist mutation that introduces a stop codon upstream of the bHLH domain. We observed tha...

متن کامل

Translocation breakpoint maps 5 kb 3' from TWIST in a patient affected with Saethre-Chotzen syndrome.

Saethre-Chotzen syndrome, a common autosomal dominant craniosynostosis in humans, is characterized by brachydactyly, soft tissue syndactyly and facial dysmorphism including ptosis, facial asymmetry, and prominent ear crura. Previously, we identified a yeast artificial chromosome that encompassed the breakpoint of an apparently balanced t(6;7) (q16.2;p15.3) translocation associated with a mild f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 7 6  شماره 

صفحات  -

تاریخ انتشار 1998